Asymptotic normality and valid inference for Gaussian variational approximation
نویسندگان
چکیده
منابع مشابه
Variational Inference for Sparse Spectrum Approximation in Gaussian Process Regression
Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random va...
متن کاملAsymptotic Normality of Maximum Likelihood and its Variational Approximation for Stochastic Blockmodels
Variational methods for parameter estimation are an active research area, potentially offering computationally tractable heuristics with theoretical performance bounds. We build on recent work that applies such methods to network data, and establish asymptotic normality rates for parameter estimates of stochastic blockmodel data, by either maximum likelihood or variational estimation. The resul...
متن کاملConvergence and Asymptotic Normality of Variational Bayesian Approximations for Expon
We study the properties of variational Bayes approximations for exponential family models with missing values. It is shown that the iterative algorithm for obtaining the variational Bayesian estimator converges locally to the true value with probability 1 as the sample size becomes indefinitely large. Moreover, the variational posterior distribution is proved to be asymptotically normal.
متن کاملVariational Gaussian Copula Inference
We utilize copulas to constitute a unified framework for constructing and optimizing variational proposals in hierarchical Bayesian models. For models with continuous and non-Gaussian hidden variables, we propose a semiparametric and automated variational Gaussian copula approach, in which the parametric Gaussian copula family is able to preserve multivariate posterior dependence, and the nonpa...
متن کاملDecoupled Variational Gaussian Inference
Variational Gaussian (VG) inference methods that optimize a lower bound to the marginal likelihood are a popular approach for Bayesian inference. A difficulty remains in computation of the lower bound when the latent dimensionality L is large. Even though the lower bound is concave for many models, its computation requires optimization over O(L) variational parameters. Efficient reparameterizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2011
ISSN: 0090-5364
DOI: 10.1214/11-aos908